

Savings obtained from different spray systems for precision pesticide applications in orchards

GIL Emilio - Professor

SALCEDO Ramón - Professor

García-Ruiz Fransisco - Professor

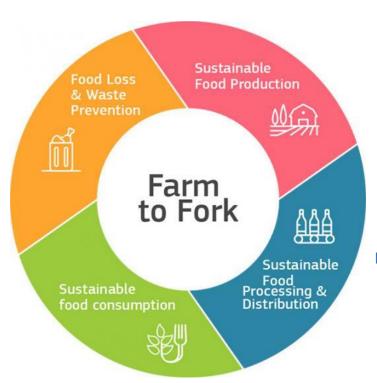
Bernat Salas - Student

Lu Xun - Student

NAVARRO Mathis - Student

Who am I?

Mathis NAVARRO


Student at AgroParisTech and Institut Agro Dijon Intern at Universitat Politècnica de Catalunya

Summary

- Context and Issues
- 2. GOPHYTOVID: optimization using vigour maps
- 3. OPTIMA: ultrasound sensors to adapt the treatment to the canopy
- 4. Which future for these technologies?

European strategy

Moving towards a more healthy and sustainable EU food system, a corner stone of the European Green Deal

Make sure Europeans get healthy, affordable and sustainable food

Tackle climate change

Protect the environment and preserve biodiversity

Fair economic return in the food chain

Increase organic farming

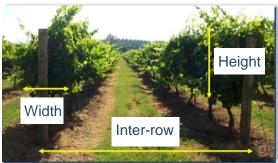
The use of pesticides in agriculture contributes to pollution of soil, water and air. The Commission will take actions to:

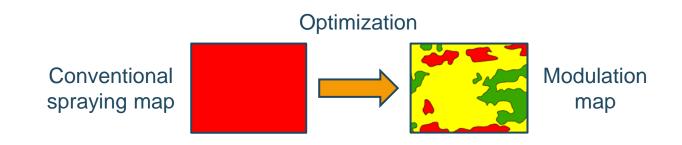
- √ reduce by 50% the use and risk of chemical pesticides by 2030.
- √ reduce by 50% the use of more hazardous pesticides by 2030.

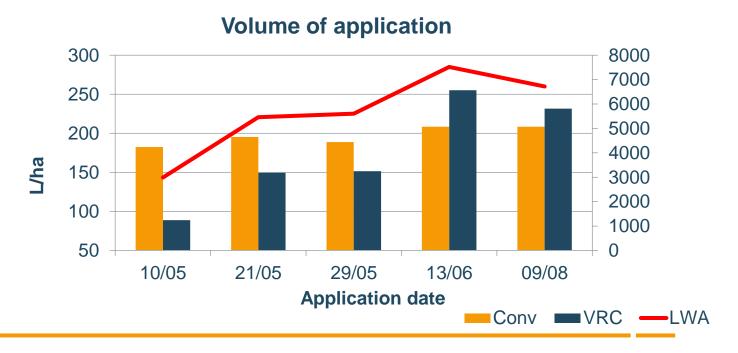
Current issues

- Great variability
 - in types of sprayers
 - Within a field

Between fields






Difficulty for farmers to adapt their treatment to canopy characteristics

Precision agriculture benefits

- Constant application rate sprayers :
 - Overdosage and significant drift

- Variable rate sprayers :
 - Facilitate the farmers' work
 - Optimization of the treatment

Principle of GOPHYTOVID

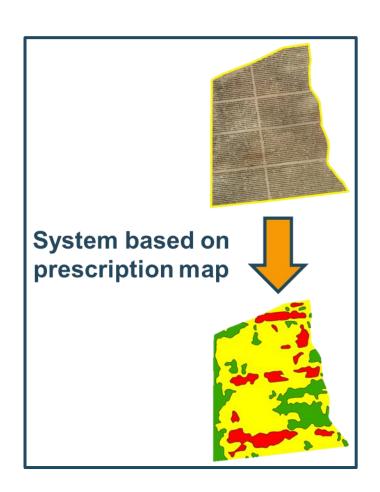
Fit a conventional sprayer with a variable application system

Intelligent control system

Determine the reliability of the system

Saving and analysing data

Touchscreen and GNSS

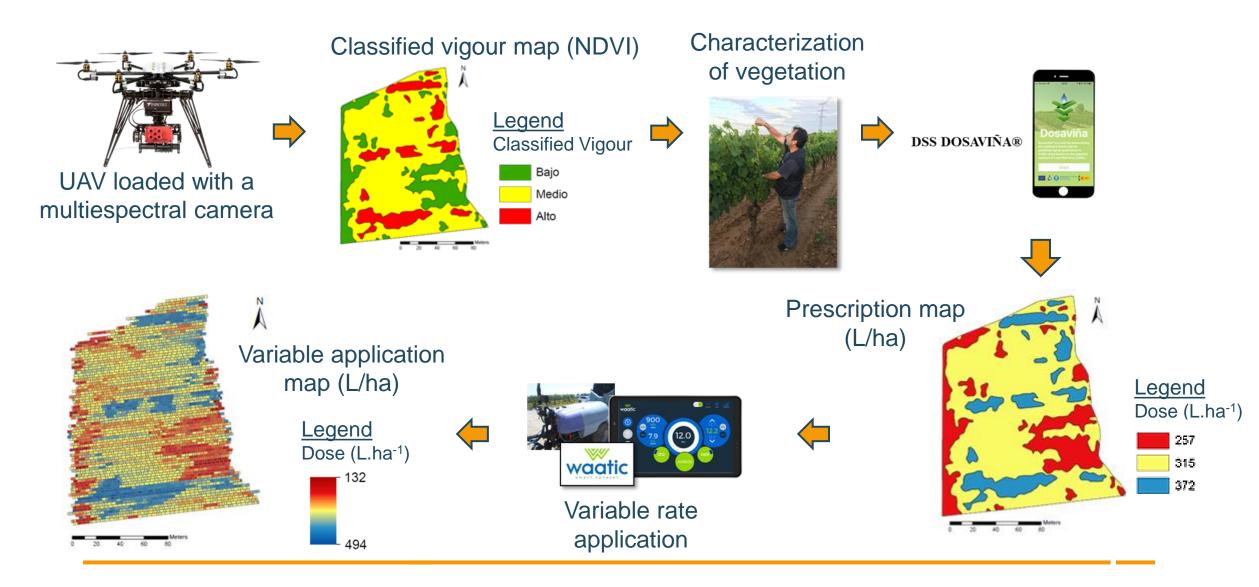


Savings analysis

Characteristics of the field

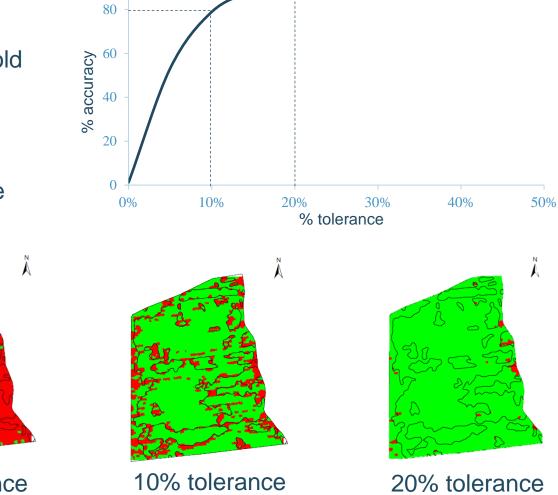
Location : Torrelavit (Barcelona, Spain)

Vine variety : Chardonnay

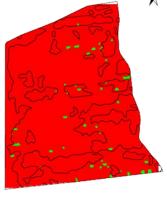

Surface area : 2,21 ha

Planting pattern : 2,2 m x 1,2 m

Vegetative state : BBCH 77 to 79



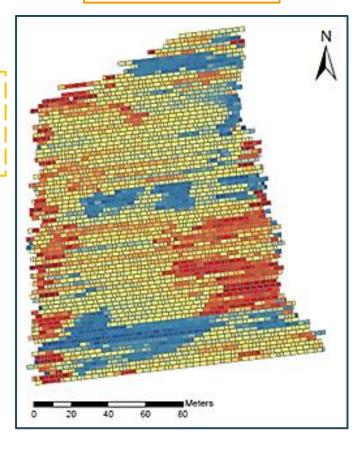
Process to acquire and use data



Accuracy of the system

- Accuracy depends on the tolerance threshold
- Physical parameters need transitions
- ► The need to determine an optimal tolerance

- Inside the tolerance
- Outside the tolerance



0% tolerance

Accuracy of the system

Prescription map

10% of tolerance 76% of correct application Better transition between vigours Variable application map

Saving analysis

- Significant water savings
- Economic issues
- Less environnemental impact

2019		Jean Leon			Fransola
Costs	Units	CONV	VRC	Savings	Savings
Crop protection product	€/ha per year	63,5	63,5	0%	0%
Diesel	€/ha per year	23,9	23,5	2%	6%
Operational cost	€/ha per year	48,9	47,7	2%	9%
SUBTOTAL	€/ha per year	136,3	134,7	1%	2%
VRC cost	€/ha per year	-	55,6	-	
TOTAL	€/ha per year	136,3	190,3	-40%	-40%

2019	Units	Jean Leon			Fransola
		CONV	VRC	Savings	Savings
Water	m3/year	66	56	15%	35%
co ₂	kg CO ₂ /ha per year	18,9	18,6	2%	6%
Time	h / ha per year	4,4	4,3	2%	9%

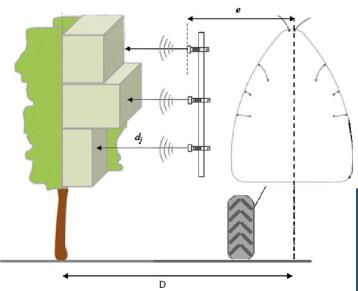
What is OPTIMA?

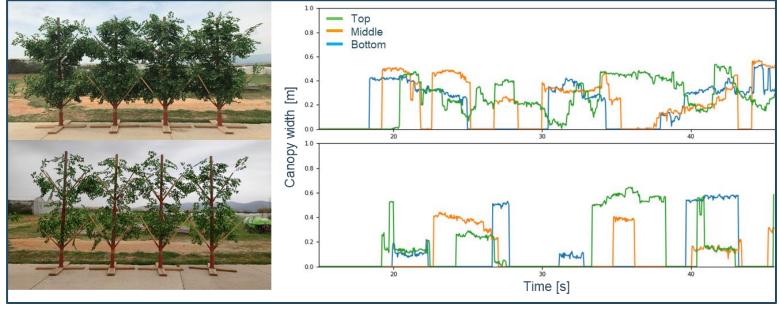
European Horizon 2020 project : Italy, France and Spain

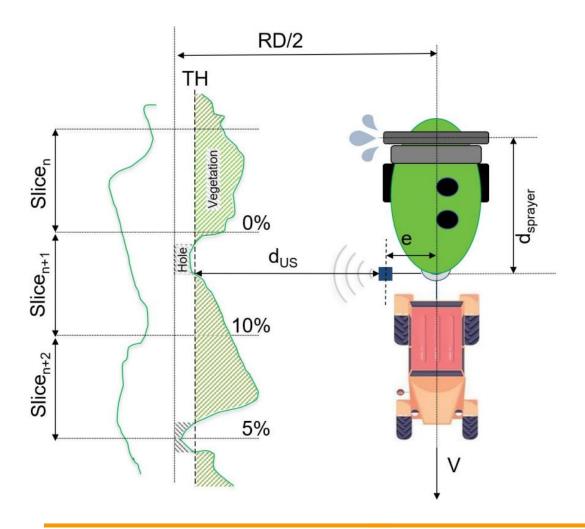
Exeperimentations in Aragon, Spain: 11% of Spain apple orchard surface

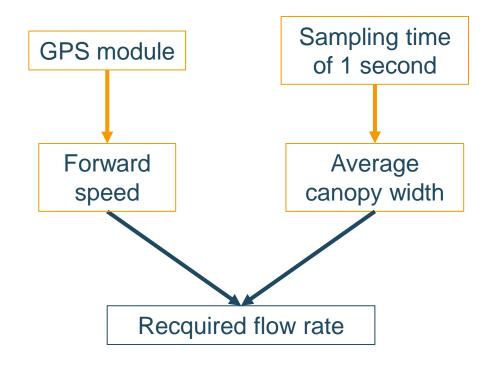

- Objectives of the project :
 - Development of new thechnologies in precision agriculture
 - Experimentation in real conditions
 - Optimization of the treatment against apple scab
 - Determination of environnemental and economic impacts

Characteristics of the sprayer




Ultrasound sensors data


Onboard electronic translates data using this formule :

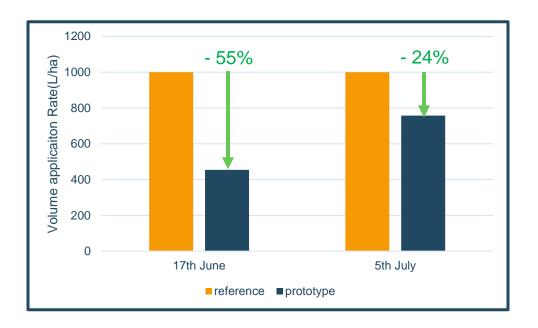

$$q(1 \text{ min}^{-1}) = \frac{[D - d_i - e_i](\text{m}) \times h/3(\text{m}) \times v(\text{km h}^{-1}) \times i(1 \text{ m}^{-3}) \times 1000}{60}$$

- Three sections per side with :
 - Ultrasound sensor
 - Motor valve
 - Pressure sensor
 - 3 or 4 nozzles


Real time dose adjustment

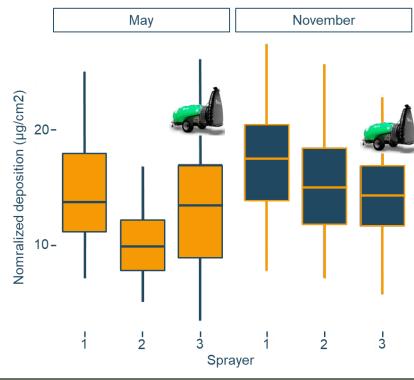
Trial location and sprayers

- Fields located at Begues, Barcelona, Spain
- Planting pattern 3,6 m x 1,2 m
- Same conditions for both trials


	Reference sprayer	Prototype	
Brand	Makato	Pulverizadores Fede	
Tank capacity	1000L	2000L	
Air fan	Axial fan without air deflectors	Axial fan with tower air deflector	
Nozzles	14 Albuz ATR nozzles combined (green, red and Orange)	20 Lechler IDK nozzles combines 01 and 015 (ISO colour code)	
Forward speed	4 km/h	4.2 km/h	
Pressure	18 bar	Variable from 7 to 15 bar)	

Results

Significant savings


Lower environmental impact

Date	Active ingredient	Prototype (amount of product used per hectare)	Reference (amount of product used per hectare)	Savings
	Clorur oxiychloride 50%	1,5 Kg	3 Kg	55%
17/06/2022	Spinosad 48%	12 mL	25 mL	55%
	Potasic soap	14 L	30 L	55%
05/07/2022	Clorur oxiychloride 50%	2,3 Kg	3 Kg	24%
	Potasic soap	30 L	40 L	24%
18/07/2022	Spinosad 48%	19 mL	25 mL	24%

Results

- Same disease control on the apple scab
- Better savings with the prototype

Date	Type of sprayer	Volume Rate (L/ha)	% reduction
May 2021	Conventional	881	0%
	Best Management Practices	773	12%
	Prototype	475	46%
November 2021	Conventional	877	0%
	Best Management Practices	769	12%
	Prototype	462	47%

Adapting technologies and fields

- Development of autonomous robots
- Different sorts of technologies :
 - Cameras for visual recognition
 - Ultrasound sensors
 - Laser
 - PWM valves

PIVOS project – PWM system

BAKUS S – Vitibot

Mutual adjustment between agronomic characteristics and technologies involved

QUESTIONS & ANSWERS