Noise Challenges in hydraulic transmissions

EMA

GAUDÉ Gladys – NVH Expert, POCLAIN HYRAULICS

POCLAIN Hydraulics

Who am I ?

Gladys GAUDE OKADI NVH Expert – POCLAIN HYDRAULICS

5TH SIMA AGRITECHDAY – International Conference of Technologies and Solutions for Efficient and Sustainable Agriculture

Summary

- 1. Problem statement
- 2. Test & Measurement challenges
- 3. Computational challenges
- 4. Conclusions

PROBLEM STATEMENT

NOISE RELATED TO AGRICULTURE MACHINERY

- FRANCE : Noise related to agriculture activity falls in the « neighborhood noise » regulations.
 - Based on noise Emergence
 - More restrictive during night work \rightarrow 3 dB(A) Emergence

- ACOUSTIC standards and regulations : more and more restrictive
 - European Directives under revisions

HYDROSTATIC TRANSMISSION

In hydraulic transmissions in agricultural machinery : pumps are usually the most audible sources

VIBRO-ACOUSTIC SCHEME

NOISE IS SYSTEM RELATED

5TH SIMA AGRITECHDAY – International Conference of Technologies and Solutions for Efficient and Sustainable Agriculture

VIBRO-ACOUSTIC SCHEME

Noise Challenges in hydraulic transmissions

NOISE IS SYSTEM RELATED

Measurements challenge

- NVH characteristics depend on the environment
 - AIRBORNE

 \rightarrow Air pressure pulsation (noise)

- STRUCTURE BORNE
- FLUID BORNE

- \rightarrow Vibration
- \rightarrow Pressure pulsation

MEASUREMENT ON BENCH ≠ **MEASUREMENT ON FINAL MACHINE**

Needs :

- Determine INTRINSIC characteristics
- Determine measurement methodologies
- Use those characteristics to determine full system behavior

ISO standard exist !!

GOAL : EASE SUPPLIER - INTEGRATOR DIALOG

AIRBORNE NOISE

Measurement methodology widely used over industries

- INTRINSIC characteristics : Acoustic Power (Lw)
- Several Standards, using different measurement equipment
 - ISO 3740 series \rightarrow Controlled environment and microphones positions
 - ISO 9614 \rightarrow Intensity probes, less controlled environment
- Challenge for hydraulic pumps and motors : mounting setup
 - Need to avoid noise from pipes and connections
 - Need to avoid vibrations transfer to support
 - Specific guidance for hydraulic systems ISO4412

STRUCTURE BORNE NOISE

Measurements Methodology start to be used in automotive - Expert domain

- INTRINSIC characteristics : Blocked Force and Impedances
- Standards :
 - **ISO 21955 :** Transposition methodology from test bench to final structure
 - ISO 20270 : « In situ Measurements »

Challenge :

- COMPLEX
- Lots of accelerometers and/or dynamic force sensors
- Capabilities for Impact tests, FRF
- Specific post processing software
- Pipes ?
- Impedances to be determined also on passive side \rightarrow OEM
- Under development at Poclain

Allow vibration prediction in any part of the structure

FLUID BORNE NOISE

Measurements Methodology in Expertise domain

- INTRINSIC characteristics : Source pressure pulsation and Impedances of components
- Standards :
 - **ISO 15086 :** Determination of fluid-borne noise characteristics
 - **ISO 10767 :** Determination of pressure ripple levels

Challenge :

- Require a **specific bench** & specific hydraulic circuit
- **Dynamic pressure measurements** capabilities
- Specific post processing knowledge
- Impedances on passive elements necessary

Allow pressure pulsation prediction in any part of the system

ISO 10767 setup exemple

Variable restrictions

Circuit impedance representation (ISO 10767)

Source of noise is multiphysic !

Different physics \rightarrow **Different softwares**

FMBD methodology (Flex Multi Body Dynamics)

Different physics → Different softwares

Exemple of Motor NVH simulation

SOURCE of Noise : commutation HP/BP

- Steady State simulation at different opening steps
- Calculation of pressure drop in channel during commutations

- Rigid Body simulation of hydrobase kinematic
- Computation of forces applied on the structure by the pistons

DESIGNS COMPARISONS USING SIMULATION

Optimization of interface designs :

- Notches designs
- Holes sizes
- ...
- Trends can be found
- Compromise with performance requirements Compromise with performance requirements

Config 2 -optimized notches

Accélération came point 3

Point 3

CONCLUSIONS

- Noise is system related
- Dialog necessary between component suppliers and OEM
 - Early in Machine Development
- NVH Specifications and qualifications must include **intrinsic characteristics**
 - For airborne, structure borne and Fluid-borne noises
- Test & Measurements : Methodologies exists
- Computation from source to noise radiation
 - Multiphysics
 - Complex to put in place

QUESTIONS & ANSWERS