Mild Hybrid T4 e-Source with EasyTrim^e and e-Mulcher

FIORATI Stefano – CNH Industrial – Zero Emission & Advanced Drivetrain Manager, Modena, Italy

EMA

Who are we (Who am I) ?

Stefano FIORATI Ph.D in Mechanics of Machine Zero Emission & Advanced Drivetrain Manager – CNH Industrial - Modena, Italy

Summary

- 1. Executive Summary: vision & business needs
- 2. Product overview
- 3. Technical Description
- 4. Experiment & Simulation
- 5. Conclusion

Executive Summary: vision & business needs

Mild Hybrid T4 e-Source with EasyTrime and e-Mulcher

Bring innovative solutions for our customers improving profitability and costs with cleaner solutions

- Need Vineyard and orchard customers are more and more looking to new solutions
- Solution Mild-hybrid solution coupled with an engine downsizing allowing After Treatment System simplification
- Innovation combine electric needs for implements with torque assist in a compact Specialty tractor
- **Benefits Flexible solution with clear customer benefits**

骨

6

Ŧ

Market availability – Concept is developed with the new compact tractor architecture that would be introduced in the market in 2022

Mild-hybrid with electrified implement capability

T4 e-Source an integrated solution first on this segment for a sustainable agriculture

T4 e-Source with 48V Hybrid pack

System Overview

- The mild-hybrid architecture, is based on a 48V electric machine integrated between internal \geq combustion engine and tractor driveline (P1 configuration) providing 20kW continuous power and 30kW peak power.
- The electric machine can work as electric generator or as electric motor depending on the mode. \geq The working modes allowed by this architecture are two:
 - > Power supply to electric Implements
 - >Torque assist and torque boost mode

Architecture nomenclature

Battery run time analysis

Cultivator details

Power analysis

Cultivator mission max duration with current battery

Mechanical cultivator on flat surface and 200m length at 6.5kph

- The battery discharging rate is about 10% over the cycle. The end of row turn maneuver, represents a phase to recover the initial State of Charge (SoC) proving that the mission is battery energy neutral.
- A simulation of the repetition of the active cycle has been performed till the SoC is about 10%. The simulation has shown that the tractor can run for about 1940m.

T4 e-Source with 48V Hybrid pack

Working modes - video

Implement: electrification (48V)

Fuel saving, benefits to environment and efficient energy use

Implement electrification power saving simulation. Hydraulic architecture vs electric

Efficiency and polluting emissions improvement

- > PTO driven implements:
 - Fuel consumption reduction up to 29%
 - > CO₂ reduction up to 1000kg per year.
- > Hydraulically driven implements:
 - Fuel consumption saving up to 30% is achieved

Type of implement	Ground speed [kph]	Engine speed [rpm]	Fuel consumption [lph]	Fuel saving percentage
PTO 540e rpm	4	1503	5,5	
PTO 540 rpm	4	1904	6,9	from 10 to 29
Electric	4	1309	4,9	
Type of implement	Knife speed [rpm]	Engine speed [rpm]	Fuel consumption [lph]	Fuel saving percentage
Type of implement Electric Hydraulic	Knife speed [rpm] 2500 2500	Engine speed [rpm] 1010 1400	Fuel consumption [lph] 3,6 4,8	Fuel saving percentage 25

1621

5,6

Hydraulic

2750

Engine test bench activities

Performance of F28 55kW w/engine downsize

Hybrid system impact over standard internal combustion engine. Test bench cycle

Improved reactiveness: up to 50%-time reduction

Conclusion

- Mild-hybrid architecture with electrified implement capability keeping the overall tractor dimensions within the range for vineyard and orchard applications.
- **Flexibility**: it allows customer to use both electric and traditional Hydraulic/PTO implements.
- Clean: Improved fuel consumption with respect to conventional implements up to 30% with a consequent reduction of CO₂ thanks to engine decoupling from e-implements.
- **Simplified** After Treatment System: SCR removal for F28 55kW engine rating.
- > Engine drivability: up to 50% less time to recover target engine speed vs conventional tractor.
- > Potential for **oil free application** and additional hydraulic power unit removal.
- > **Maintenance** operation and running cost reduction.
- Productivity improvement: electrification as enabling factor for implement automation and coordination of multiimplement tasks (trimmer, mulcher and other electrified tools).

QUESTIONS & ANSWERS