

DriftRadar® concept: Towards the automatic management of spray drift

Caroline DESBOURDES, Precision Ag, ARVALIS
Benjamin PERRIOT, Spray Appl. Tech. ARVALIS
Jean - Paul DOUZALS, Spray Appl. Tech., INRAE
Andrew CHAPPLE, Susanne LAUCK BIRKEL,
Catherine LEGUE, Josy BRAVIDOR,
Frank DIETZ, BAYER

Who are we (Who am I)?

Jean-Paul DOUZALS
PhD
Scientist – INRAE
UMR ITAP Montpellier

Andrew CHAPPLE, PhD Senior Scientist. – BAYER

Frank DIETZ, MSc Tech- BAYER

Josy BRAVIDOR, MSc IT – BAYER

Benjamin PERRIOT

MSc Agronomy

Spray App. Tec. – ARVALIS

MSc
Precision Ag. – ARVALIS

Suzanne LAUCK BIRKEL PhD, BAYER

Summary

- Concepts of smart sprayers
- 2. DriftRadar® components
- 3 DriftRadar® evaluation methods
- 4 Results
- 5. Conclusion

1- Different types of smart sprayers

Functionalities

- <u>Detection</u>: vegetation-crop architecture/width, weeds*, diseases,
 - RGB or multispectral imagery
 - Lidar
- Variable Rate Application (VRA)
 - Boom section control
 - PWM nozzles: spot spraying, acc/decc phases, spraying while turning,...
 - Canopy adapted sprayers air/spray adjustment
- Spray drift adjustment
 - Multiple nozzle holders (Amazone, John Deere, ...)

*Liu, B., Bruch, R. Weed Detection for Selective Spraying: a Review. Curr Robot Rep 1, 19–26 (2020).

JD See and spray

2- DriftRadar® components

2- DriftRadar® settings : digital label interface

2- DriftRadar® settings: Field/sensitive area mapping

2- DriftRadar® settings : Control system settings

2- DriftRadar® evaluation: Nozzle/section mapping

2- DriftRadar® evaluation: Nozzle/section monitoring

GPS RTK

13

2- DriftRadar® evaluation through simulations and field tests

Buffer location	NTTP & NTA (5m)	Water (5m)	Residents (28m)	Nozzle control	Section control	Wind	Total
outside	Χ	Χ	Χ	Χ	Χ	X8	16
inside	Χ	Χ	Χ	Χ	Χ	X8	48
outside + inside	X	X	X	X	X	X8	48
No inside No outside				X	X	X8	16
inside	Χ	Χ	Χ	Χ	Χ	No wind	8
outside	Χ	Χ	Χ	Χ	Χ	No wind	8
						Total	144

Modalities	Sensitive Area	Control		Date
Map 1	Outside	Section	3 rep	23/03/2021
Map 1	Outside	Nozzle	3 rep	24/03/2021
Map 2	Outside + inside (multi)	Section	4 rep	23&24/03/2021
Map 2	Outside + inside (multi)	Nozzle	3 rep	24/03/2021
Water	Outside + inside Water	Section	3 reps	30/03/2021
Water	Outside + inside Water	Nozzle	3 reps	30/03/2021
Vegetation	Outside + inside vegetation	Section	3 reps	30/03/2021
Vegetation	Outside + inside Vegetation	Nozzle	3 reps	30/03/2021
Road	Outside + inside Road	Section	3 reps	30/03/2021
Road	Outside + inside Road	Nozzle	3 reps	30/03/2021

2- DriftRadar® evaluation through simulations

monheim_testfield2-b_wgs84

Arvalis experimental site (Boigneville, 91)

GPS EGNOS accuracy: End nozzle/section inapropriate response

Control valve response time: lag in opening/shutting valves

Left: GPS EGNOS accuracy: End nozzle/section inapropriate response

Right: appropriate response, the last section passes over the buffer area (no spray required)

The DriftRadar® system aimed at automatically adjust either individual nozzle or boom section settings according to the real-time wind direction.

First the DriftRadar® software was tested using simulations of eight wind directions and a virtual field were inner and/or outer sensitive areas were defined.

Second, the complete system installed on a 28m monitored boom sprayer was tested. Results showed that although the system was able to react correctly according to the situation, different sources of variability were observed.

The GPS using EGNOS correction showed some accuracy limitations compared to a GPS RTK and end of boom nozzles were sometimes improperly set.

The second source of variability was due to the reaction time of control valves leading to a delay in activating or deactivating nozzles close to a buffer area.

These defaults were reworked soon after the evaluation in order to better comply with the requirements of the system. This system was awarded "DLG - Agrifuture Concept Winner" by the DLG (German Agricultural Society) at this 2022 Agritechnica event.

QUESTIONS & ANSWERS

