1st AXEMA-EurAgEng Conference

"Intensive and environmentally friendly agriculture: an opportunity for innovation in machinery and systems"

Experimental justification of the conveying parameters for the air-seeders

Andrii Yatskul, PhD, UniLaSalle Jean-Pierre Lemière, PhD, AgroSup Dijon

Plan

- 1. Problematic of wide width air-seeders
 - ✓ Agricultural context
 - ✓ Technical context
 - ✓ Improvement ways
- 2. Goals of research
- 3. Materials and methods
- 4. Results and discussions
- 5. Conclusions and further work
 - ✓ Air-seeder conception
 - ✓ Recommendations for air-seeder settings

1. Problematic of wide width air-seeders

Agricultural context:

- Sizeable planes areas
- Short seeding period
- High fuel cost

Technical context:

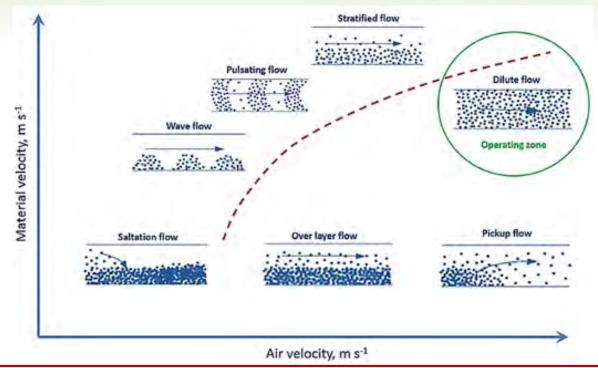
- High energy consumption for seeds conveying
- Low transversal repartition quality
- Incorrect conveying system parameters
- High clogging risk

Technical goals:

Reducing or elimination of clogs

Energy economy

Facilitation of the airseeder settings

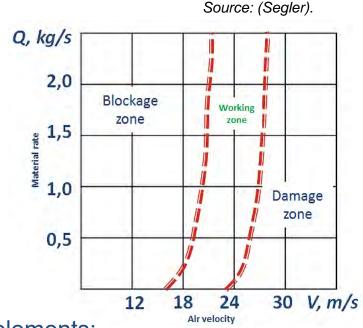


1. Problematic of wide width air-seeders

Source: (Binsirawanich, 2011; Barbosa et Seleghim, 2003).

Flow regimes for air-solid mix as the function or the air velocity

Needs in regular seed-flow
Conveying in dilute phase only


1. Problematic of wide width air-seeders

Physical and agronomy constraints:

- ✓ Narrow working zone of air velocity
- ✓ Problem of the air-evacuation before openers
- ✓ Problem of pressure losses determination
- $\checkmark\,$ Physical proprieties of seeds and fertilizers
- ✓ Poor bibliography sources
- ✓ Difficult theoretical substantiation

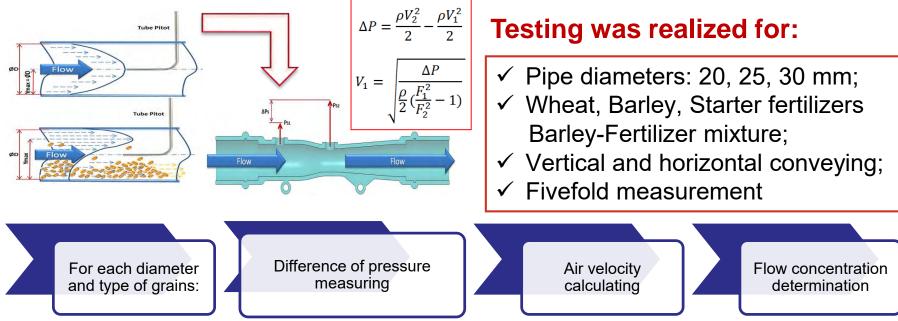
Causes of clogging:

- ✓ Slow air velocity;
- ✓ Raw seeds;
- ✓ Slowdown of the flow by the divider manifold elements;
- $\checkmark\,$ Fractures, tightening and sagging of outlet pipes

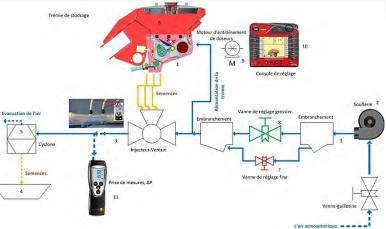
2. Goals of reseaurch

- Study of the pneumatic conveying in the air-seeders
- Determination of the optimal parameters of pneumatic conveying taking into account the specificity of air-seeders (Namely: range of air velocity and mass flow concentration)
- Generation of the viable data for the conception and setting

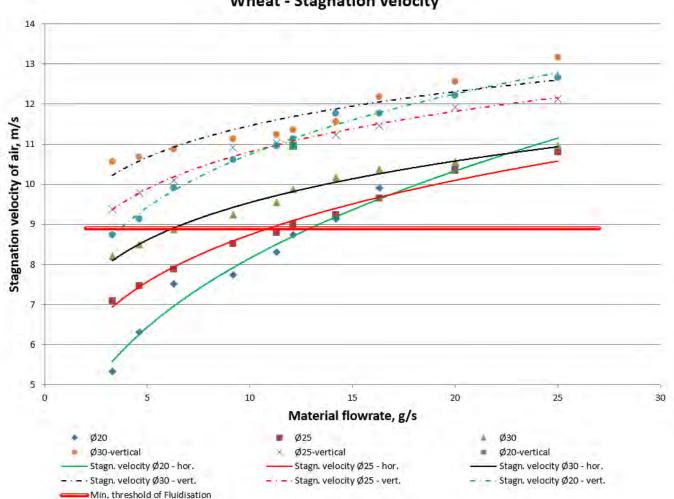
3. Materials and methods


Mass flow concentration:

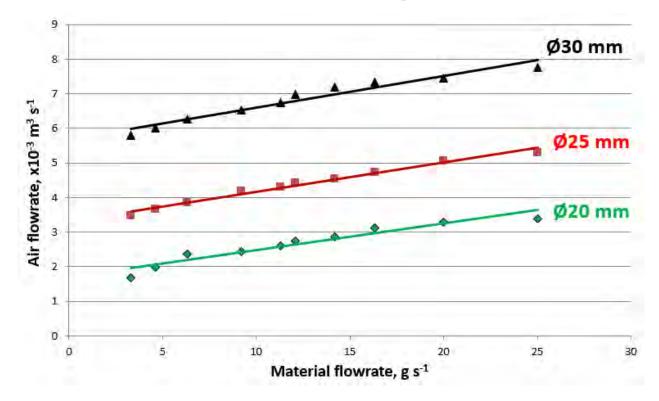
$$\mu = \frac{Q_s}{Q_g} \qquad \mu = \frac{Q_s}{V_{ast}\pi_{\frac{D^2}{4}\rho_a}^{D^2}}, \text{[kg/kg]} \qquad Q_m = \frac{QV_mB}{10^4}$$


- Q_s mass material rate, in kg/s;
- Q_g mass air rate: in kg/s;
- Q'_g volume air rate, in m³/s;

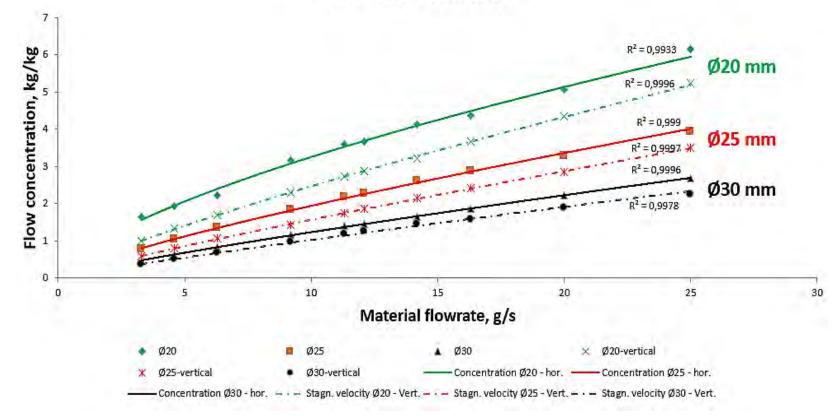
 ρ_a - volumetric mass density of air


Air velocity measurement:

Experimental setup:



Barley, fertilizers and mixture stagnation velocities:


Wheat - Stagnation velocity

Maximum airflow consumption for wheat

Maximum flow concentration of wheat

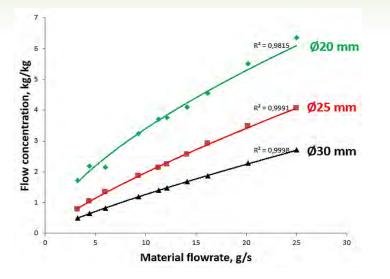
Wheat - Concentration

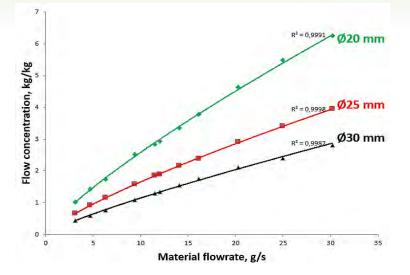
Maximum flow concentration of wheat

7

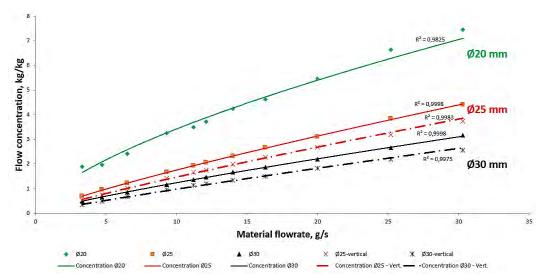
Flow concentration, kg/kg

0


Ø20 Ø25-vertic Concentra Wheat - Concentration


For example: 12.8 g/s of wheat for the rate 220kg/ha at 10 km/h):

- The mass flow concentration must be lower than 1.5 for the pipes of Ø20mm, 2.5 for the pipes of Ø25mm and 3.5 pour for the pipes of Ø30mm.
- ✓ The minimum air velocity (in the loaded pipe) must be greater than 11.8 m/s. (Vm=0.817Vmax).
- ✓ In the case of sonde Pitot using this value must be greater than 14.4 m/s.


Maximum flow concentration for Barley

Maximum flow concentration for fertilizers

Maximum flow concentration for Mixture

5. Conclusions and further work

- Starting point of design must be the optimization of conveying in the pipes after distribution head. The design of the rest of the conveying system will result from this first step
- An experimental set up was design to obtain experimental values for the maximum flow concentration and the minimum air velocity suitable for pneumatic conveying.
- > Design of new sensor system.
- It is recommended to use the pipe sections as lower as possible to favor a homogenous airflow and to reduce the energetic cost of conveying.

5. Conclusions and further work

- Experimental curves of minimum air-velocity can be used to define conditions of conveying for a type of seeds. This value may be 15% higher than the limit of stagnation velocity in vertical conveying for more safety.
- In order to develop knowledge on the conveying of mixtures other experiments could be requested for several proportions of fertilizers and seeds.
- Further development of this experimental set-up could use image analysis in order to correlate pressure measurements and seeds stagnation.
- Same work must be made for other species of seeds.

Thank you for you attention Any questions?